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INTRODUCTION

Video-based motion analysis systems are widely employed to study human

movement, using computers to capture, process, and analyze video data.

This video data can be collected in any environment where cameras can be
located.

The Anthropometry and Biomechanics Laboratory (ABL) at the Johnson

Space Center is responsible for the collection and quantitative evaluation of

human performance data for the National Aeronautics and Space

Administration (NASA). One of the NASA facilities where human

performance research is conducted is the Weightless Environment Training

Facility (WETF). In this underwater facility, suited or unsuited crewmembers

or subjects can be made neutrally buoyant by adding weights or bouyant foam

at various locations on their bodies. Because it is underwater, the WETF

poses unique problems for collecting video data. Primarily, cameras must be

either waterproof or encased in a waterproof housing.

The video system currently used by the ABL is manufactured by Underwater

Video Vault. This system consists of closed circuit video cameras (Panasonic

WV-BL202) enclosed in a cylindrical case with a plexiglass dome covering the

lens. The dome used to counter the magnifying effect of the water is

hypothesized to introduce distortion errors.

As with any data acquisition system, it is important for users to determine the

accuracy and reliability of the system. Motion analysis systems have many

possible sources of error inherent in the hardware, such as the resolution of

recording, viewing and digitizing equipment, and lens imperfections and

distortions. Software errors include those caused by rounding and

interpolation. In addition, there are errors which are introduced by the use of

the system, such as inaccurate or incomplete calibration information,

placement of cameras relative to the motions being investigated, and

placement of markers at points of interest. Other errors include obscured

points of interest and limited video sampling rates.

Image distortions will introduce errors into any analysis performed with a

video-based motion analysis system. It is, therefore, of interest to determine

the degree of this error in various regions of the lens. A previous study

(Poliner, et al., 1993) developed a methodology for evaluating errors

introduced by lens distortion. In that study, it was seen that errors near the

center of the video image were relatively small and the error magnitude

increased with the radial distance from the center. Both wide angle and

standard lenses introduced some degree of barrel distortion (fig. 1).
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Figure 1. Barrel distortion from a video lens. Top: original image. Bottom: distorted image.

Since the ABL conducts underwater experiments that involve evaluating

crewmembers' movements to understand and quantify the way they will

perform in space, it is of interest to apply this methodology to the cameras
used to record underwater activities. In addition to distortions from the lens

itself, there will be additional distortions caused by the refractive properties of
the interfaces between the water and camera lens.

This project evaluates the error caused by the lens distortion of the cameras

used by the ABL in the WETF.
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METHODS

Data Collection

A grid was constructed from a sheet of 0.32 cm (0.125 in) Plexiglas. Thin black

lines spaced 3.8 cm (1.5 in) apart were drawn vertically and horizontally on

one side of the sheet. Both sides of the sheet were then painted with a WETF

approved white placite to give color contrast to the lines. The total grid size

was 99.1 x 68.6 cm (39.0 x 27.0 in). The intersections of the 19 horizontal and

27 vertical lines defined a total of 513 points (fig. 2). The center point of the

grid was marked for easy reference. Using Velcro, the grid was attached to a

wooden frame, which was then attached to a stand and placed on the floor of

the WETF pool.

At the heart of the Video Vault system was a Panasonic model WV-BL202

closed circuit video camera. The camera had been focused above water,

according to the procedures described in the Video Vault users manual,

attached to a stand, and placed on the WETF floor facing the grid. Divers used

voice cues from the test director for fine alignment of the camera with the

center of the grid. By viewing the video on poolside monitors, the camera

was positioned so that a predetermined region of the grid nearly filled the

field of view. The distance from the camera to the grid was adjusted several

times, ranging from 65.3 to 72.6 cm (25.7 to 28.6 in). Data collection consisted

of videotaping the grid for at least 30 seconds in each of the positions, with

each position considered a separate trial. Descriptions of the arrangements of

the four trials are given in table 1. Distance refers to the distance from the

camera to the grid. Image size was calculated by estimating the total number

of grid units from the video. The distance from the outermost visible grid

lines to the edge of the image was estimated to the nearest one-tenth of a grid

unit. The distance and image size values are all in centimeters.

Table 1. Descriptions of the Various Trials

TRIAL DISTANCE

1 72.6
2 66.0
3 65.3
4 65.3

IMAGE SIZE

x Y

80.4 61.7
73.5 55.6
72.4 54.9
72.4 55.3

GRID LINES

x Y

21 17

19 15
19 15
19 14

#

POINTS

357
285
285
266
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Figure 2. Grid of lines used in the study. Intersections of lines were used as test points.

Data Analysis

An Ariel performance analysis system (APAS) was used to process the video

data. Recorded images of the grid were played back on a VCR. A personal

computer was used to grab and store the images on disk. For each trial,
several frames were chosen from the recording and saved, as per APAS

requirements. From these, analyses were performed on a single frame for
each trial.

Because of the large number of points (up to 357) being digitized in each trial

and the 32-point limitation of the APAS system (software rev. 6.30), the grid

was subdivided into separate regions for digitizing and analysis. Each row

was defined as a region and digitized separately.

An experienced operator digitized all points in the grid for each of the trials.

Here digitizing refers to the process of the operator identifying the location of

points of interest in the image with the use of a mouse-driven cursor. Often

digitizing is used to refer to the process of grabbing an image from video
format and saving it in digital format on the computer. Digitizing and

subsequent processing resulted in X and Y coordinates for the points.
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Part of the digitizing process involved identifying points of known

coordinates as control (calibration) points. Digitization of these allows for

calculation of the transformation relations from image space to actual

coordinates. In this study, the four points diagonal from the center of the grid

were used as the control points (points marked "X" in fig. 2). These were

chosen because it was anticipated that errors would be smallest near the

center of the image. Using control points which were in the distorted region

of the image would have further complicated the results. The control points

were digitized and their known coordinates were used to determine the

scaling from screen units to actual coordinates.

For trial 1, the coordinates ranged from 0 to approximately +38.1 cm in the X

direction and 0 to approximately +30.48 cm in the Y direction. For trials 2 and

3, the ranges were 0 to +34.29 cm in X and 0 to +_26.67 cm in Y. For trial 4, the

range was 0 to +_34.29 cm in X and 0 to -22.86 and +26.67 in Y. To remove the

dependence of the data on the size of the grid, normalized coordinates were

calculated by dividing the calculated X and Y coordinates by half the total

image size in the X and Y directions, respectively. Table 1 lists these sizes for
the four trials. Thus, normalized coordinates in both the X and Y directions

were dimensionless and ranged approximately from -1 to +1 for all four trials.

For all trials, the error for each digitized point was calculated as the distance

from the known coordinates of the point to the calculated coordinates.

RESULTS

Raw data from the four trials are presented in figure 3. Shown are graphs of

the calculated normalized coordinates of points. Grid lines on the graphs do

not necessarily correspond to the grid lines which were videotaped. Note the

slight barrel distortion evident especially near the edges of the images.
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Figure 3. Calculated normalized coordinates of points.
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For each trial, the error of each point was calculated as the distance between

the calculated location (un-normalized) and the known location of that point.

These error values were then normalized by calculating them as a percent of

half the image size in the horizontal direction (trial L 40.2 Cm; trial 2, 36.8 cm;

trials 3 and 4, 36.2 cm). This dimension was chosen arbitrarily to be

representative of the size of the image.

Figure 4 presents contour plots of the normalized error as a function of the

normalized X-Y location in the image for each of the trials. This type of

graph, commonly used in land elevation maps, displays information three-

dimensionally. The coordinate axes represent two of the dimensions. Here,

these were the X and Y coordinates of the points. The third dimension

represents the value of interest as a function of the first two dimensions, in

this case, the error as a function of the X and Y location. Curves were created

by connecting points of identical value.

Interpreting these graphs is similar to interpreting a land map; peaks and

valleys are displayed as closed contour lines. Once again, it was clear that

errors were small near the center of the image and became progressively

greater further away from the center.

The unevenness evident in some of these graphs can be partly attributed to

splitting the image into separate regions for the purpose of digitizing. The

control points were redigitized for each individual section. Since the control

points were close to the center of the image, a small error in their digitization

would be magnified for points further away from the center.

Another quantitative way of viewing this data was to examine how the error

varied as a function of the radial distance from the center of the image. This

distance was normalized by dividing by half the image size in the horizontal

direction (trial 1, 40.2 cm; trial 2, 36.8 cm; trials 3 and 4, 36.2 cm). Figure 5

presents these data for each of the four trials.
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Figure 4. Error contour plots for each of the four trials. All coordinates have been normalized.
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Linear and binomial regressions were then fit to the data for each trial and for
all data combined. The linear fit was of the form

Error = Ao + A1 R

where R was the radial distance from the center of the image (normalized),

and A0 and A1 were the coefficients of the least-squares fit. The binomial fit
was of the form:

Error = Bo + B1 R + B2 R 2

where Bo, B1, and B2 were the coefficients of the fit. The results of these least-

squares fits are presented in table 2. The columns labeled "RC" are the

squares of the statistical regression coefficients (r2).

Table 2. Coefficients of Linear and Binomial Regressions

LINEAR FIT BINOMIAL FIT

Trij_Jl A0 A_j.1 RC1 B0 B._].I B2 RC2

1 -1.985 6.592 0.735 0.1257 -1.104 5.878 0.787
2 -1.828 5.819 0.657 0.3773 -2.395 6.403 0.720
3 -1.852 6.285 0.698 0.0698 -0.760 5.406 0.744
4 -2.410 8.229 0.604 0.3035 -1.928 7.935 0.651

combined -2.000 6.679 0.636 0.1980 -1.434 6.264 0.684

Figure 6 presents the binomial regression for the error as a function of radial
distance for all the data combined.
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DISCUSSION

When reviewing these results, several points should be noted. First, this

study utilized a two-dimensional analysis algorithm. A limitation of the

APAS system (rev. 6.30) was that exactly four calibration points were required

to define the scaling from screen coordinates to actual coordinates. The use of

more than four points would likely result in less variability. Second, all
coordinates and calculated errors were normalized to dimensions of the

image. Although there were many possibilities for the choice of dimension

(e.g., horizontal, vertical or diagonal image size; maximum horizontal,

vertical, or diagonal coordinate; average of horizontal and vertical image size

or maximum coordinate; etc.), the dimensions used to normalize were

assumed to best represent the image size.

It is clear from these data that a systematic error caused by lens distortion

occurred when using the underwater video system. Lens distortion errors

were less than 1% from the center of the image up to radial distances

equivalent to 25% of the horizontal image length (normalized R equal to 0.5).

Errors were less than 5% for normalized R up to 1, an area covering most of

the image. Errors in the comers due to lens distortion were approximately

8%. Note that this accuracy relates only to lens distortion. There are many

other sources of error (lens imperfections, incomplete calibration point

information, digitizing resolution, etc.) which could add to these values.
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There seemed to be some degree of random noise. This was evident in the

scatter pattern seen in the graphs in figure 5. This error can most likely be

attributed to the process of digitizing. There are factors which limit the ability

to correctly digitize the location of a point, such as: if the point is more than

one pixel in either or both dimensions, irregularly shaped points, a blurred

image, shadows, etc. Because of these factors, positioning the cursor when

digitizing was often a subjective decision. It should be pointed out that the

error caused by this subjective method of identifying points would be reduced

by using a system which automatically identified the centroid of the points of

interest to sub-pixel accuracy.

Four trials were analyzed in this study. Although all the data were

normalized, there were slight differences among the four trials (fig. 5 and

table 2). These can most likely be attributed to the uncertainty in determining

the grid size, which was estimated from the fraction of a grid unit from the

outermost visible grid lines to the edge of the images.

Two types of regressions were fit to the data: linear and binomial. The

interpretation of the coefficients of the linear regression can provide insight

into the data. A 1, the slope of the error-distance relation represents the

sensitivity of the error to the distance from the origin. Thus, it is a measure

of the lens distortion. A 0, the intercept of the linear relation can be

interpreted as the error at a distance of zero. If the relation being modeled

were truly linear, this would be related to the random error not accounted for

by lens distortion. However, in this case, it is not certain if the error-distance

relation was linear. The RC values gave an indication of how good the fit

was. The binomial curve fit seemed to more correctly represent the data. The

interpretation of these coefficients, however, is not as straightforward.

CONCLUSIONS

This study has taken a look at one of the sources of error in video-based

motion analysis using an underwater video system. It was demonstrated that

errors from lens distortion could be as high as 8%. By avoiding the outermost

regions of the lens, the errors can be kept smaller.
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